Linking plant evolution with soil microbial processes in coastal marshes

Coastal marshes are among the most productive ecosystems on Earth, providing valuable services that are increasingly threatened by human-induced environmental change. Anthropogenic pressures can negatively impact constitutive biota, like coastal vegetation and soil microorganisms capable of governing ecosystem processes such as biogeochemical cycling that determine the availability of valuable services (e.g., storm protection). Despite its potential importance, efforts to forecast the state and fate of coastal marshes thus far rarely account for the impact that climate stressors may have on plant-microbe interactions. We are investigating how soil microbial processes (e.g., functional diversity) are influenced by plant evolution (i.e., genetically based trait variations) under conditions of environmental change. Leveraging 100+ year old seed banks of Schoenoplectus americanus, we are examining if differences in plant traits arising from different genetic identities of an ecologically-important salt marsh plant contribute to differences in soil microbial processes under the interactive effects of elevated nitrogen and salinity.

Ecological drivers of plant-microbe interactions in wetlands


Wetland ecosystems provide critical and important functions such as organic matter decomposition and nutrient cycling. Soil and endophytic (microbes inside plant tissues) microbial communities can regulate these functions. Yet, our understanding of the processes underlying the assembly and functions of these microbial communities remains limited. I examine the relative influences of a suite of biotic and abiotic factors on the distribution, diversity and structure of fungal and bacterial communities within the rhizosphere, root and leaf endosphere in wetland plant species: Batis maritima, Taxodium distichium and Spartina alterniflora.


Plant-Microbe-Contaminant Interactions

Environmental pollution is a major concern along the Gulf of Mexico. We aim to study the different levels of responses (flipside: levels of impacts) of oil and heavy metal pollution on soil microbes and coastal plants. This project is partly funded by the AAUW Publication Research Grant.


Mycorrhizal biodiversity in the gulf coastal prairies and marshes on barrier islands in South Texas

This project is funded by the Society for the Protection of Underground Network (SPUN).